

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 42

Implementing an Agent-Based Automatic Code Generator for

Multi-Agent Based Process Control System Using Java

Programming

Uju Mokwe V.
1
, and Nwokolo Uchechukwu E.

2

1
 Department of Electronic and Computer Engineering, Nnamdi Azikiwe University Awka, Anambra State,

Nigeria
2
Department of Electrical/Electronic Engineering Technology, Auchi polytechnic Auchi, Edo State Nigeria

--- ----------

Date of Submission: 07-07-2020 Date of Acceptance: 21-07-2020

-- ---------------

ABSTRACT: Five agent classes are

recommended for multi agent based design, namely

classes 0 through 3 and a process agent control

class, for use in the implementation of any process

control which can be represented as an Algorithm

State Machine (ASM) chart for control systems.

The methodologies adopted are waterfall model

and the multi agent software engineering

methodology. The automatic code generator is

developed using Java programming language. A

typical control system was used to show how the

automatic code generator works. The ASM chart

representing the control system is converted into

State Transition Table (STT). The STT is

converted into a completely expanded STT. The

state agents on the automatic code generator

relevant to the present ASM chart are initialized

with output code(s) taken from the fully expanded

STT derived from the ASM chart. The generator

will generate the source code when the generate

source code button is clicked. Then the source code

realized (in C language) was compiled using C

compiler and a hex code was gotten. A prototype of

the control system specified in the ASM chart used

in this work was designed using simulation

software named Proteus. The prototype comprises

the Passive Infra Red (PIR) sensor, crystal

oscillator, Peripheral Interface Controller (PIC)

microcontroller (Pic16F877A), Light Emitting

Diode (LED) (representing the light) and motor

(representing the Air conditioner (AC)). The hex

code is fitted into the PIC microcontroller. When

the simulation is run, the PIR sensor accepts two

inputs, 0 and 1. If the input is 0, the motor and LED

will be off, but if it is 1, the LED and motor will be

on. This shows that the hex code of the source code

generated by the automatic code generator is

correct.

KEYWORDS: Automatic programming, Multi-

agent system, Code generator, Algorithmic State

Machine, State transition table, PIC

microcontroller.

I. INTRODUCTION

The concept automatic code generation

(ACG) envelopes a number of different techniques

intended at simplifying the task of writing a code.

Apart from specific implementation details these

techniques differ in the level of abstraction exposed

to the developer: a very low level of abstraction is

given by template-based techniques such as code

completion or code insertion. These allow for the

generation of code structures with a low

complexity (e.g., getters/setters), which are inserted

into the code by the user on an explicit (calling an

editor function) or implicit (the editor recognizes

the beginning of a construct and completes it)

basis. This is a very general approach that can be

applied in every programming language and in any

kind of desired application. Code transformation

represents a higher level of abstraction, where a

piece of code is translated from a source language

into a target language [1]. Code generators exist for

various types of applications in computer science,

for example, parser generators, database generators,

or unified modeling language (UML) tools, rapidly

generating production code and saving

development costs. Apart from saving time by

generating code which would otherwise have to be

implemented manually, correct generators deliver

correct code; additionally, all developmental

iterations (with alterations to the specification) can

be handled in the source language, again saving

time. While these principles and methods are

largely applied in the area of software

development, hardware developers are supported

by very few specific tools like Internet Protocol

(IP)-Core Generators or C-to-hardware compilers,

covering only a very small area of what could be

done with ACGs (Automatic Code Generators).

Each of these tools utilizes code generators for

some hardware description language in their

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 43

specific area, however, this functionality is not

exposed to a developer wishing to implement own

code generator [1]

In an earlier study by [2] identified five

classes of intelligent agents namely one class of

process control agent and four classes of state

control agents as being sufficient for use in the

implementation of any process control system

which can be represented as an Algorithmic State

Machine (ASM) chart. [2] also stated that these

five intelligent agents form the basis for automated

code generation for process control because their

codes are object-oriented and reusable and when

both the process control software and the process

monitoring software can be automatically

generated, the platform that offers this facility

becomes unique to any process control system

developer interested in automatic code generation.

Based on these developments, this work used

agent-based approach to develop and implement an

automatic code generator that generates appropriate

software code for any agent-based control system

specified in an Algorithm State Machine chart.

The role and responsibility of agent-based

control systems is ever increasing. Associated with

this increase, is the need for a robust and reusable

code which would automate and reduce software

design for agent based control systems, presents a

big challenge to the software developing industry.

To resolve this difficulty, the need to create a

software that can easily automate the generation of

this reusable codes is significant. The aim of this

work is to implement an Agent-Based Automatic

Code Generator for Multi-Agent Based Process

Control System Using Java Programming.

II. ALGORITHM STATE MACHINES

(ASM) CHART FOR CONTROL

SYSTEMS
Algorithm State Machines (ASM) is an

algorithm that consists of a few steps, which is

used to simplify a sequential digital system. An

ASM chart resembles a conventional flow chart but

the difference is, a conventional flow chart does not

have timing relationships but the ASM takes timing

relationship into account. An ASM chart describes

the sequence of events as well as the timing

relationship between the states of a sequential

controller and the events that occur while going

from one state to the other. It is employed to design

a sequential circuit having a large number of

external inputs because with a large number of

external inputs it becomes very difficult to use state

tables for designing the circuit. ASM Chart

Notations: The different blocks used in the ASM

chart are:

 The state box

 The decision box

 The conditional box [3]

2.1 Reusable Codes for Agent Based Control

Systems

Agent technology has been the subject of

extensive discussion and investigation within the

scientific community for several years, but it is

perhaps only recently that it has seen any

significant degree of exploitation in commercial

applications. Multi-agent systems are being used in

an increasingly wide variety of applications,

ranging from comparatively small systems for

personal assistance to open, complex, mission-

critical systems for industrial applications [4].

Examples of industrial domains where multi-agent

systems have been fruitfully employed include

process control, system diagnostics, manufacturing,

transportation logistics and network management.

When adopting an agent-oriented approach to

solving a problem, there are a number of domain

independent issues that must always be solved,

such as how to allow agents to communicate.

Rather than expecting developers to develop this

core infrastructure themselves, it is convenient to

build multi-agent systems on top of an agent-

oriented middleware that provides the domain-

independent infrastructure, allowing the developers

to focus on the production of the key business logic

[4]. The framework designed in this work

facilitates the development of complete agent-

based applications by means of a run-time

environment implementing the life-cycle support

features required by agents, the core logic of agents

themselves, and a rich suite of graphical tools. As it

is written completely in Java, it benefits from the

huge set of language features and third-party

libraries on offer, and thus offers a rich set of

programming abstractions allowing developers to

construct multi-agent systems with relatively

minimal expertise in agent theory [4].

2.2 What Is An Agent?

An agent is essentially a special software

component that has autonomy that provides an

interoperable interface to an arbitrary system and/or

behaves like a human agent, working for some

clients in pursuit of its own agenda. Even if an

agent system can be based on a solitary agent

working within an environment and if necessary

interacting with its users, usually they consist of

multiple agents [4]. These multi-agent systems

(MAS) can model complex systems and introduce

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 44

the possibility of agents having common or

conflicting goals. These agents may interact with

each other both indirectly (by acting on the

environment) or directly (via communication and

negotiation). Agents may decide to cooperate for

mutual benefit or may compete to serve their own

interests.

An agent is autonomous, because it

operates without the direct intervention of humans

or others and has control over its actions and

internal state. An agent is social, because it

cooperates with humans or other agents in order to

achieve its tasks. An agent is reactive, because it

perceives its environment and responds in a timely

fashion to changes that occur in the environment.

2.2.1 Agent Types and Classification

According to [5], five agent classes are

recommended for multi agent based design, namely

classes 0 through 3 and a process agent control

class, for use in the implementation of any process

control which can be represented as an Algorithm

State Machine (ASM) chart. The agents are

discussed here.

a. Agent Class 0: A class 0 agent makes a

transition from its present state to another state

without considering any qualifiers as shown in

figure 5. This happens typically where two

state boxes in an ASM chart are in sequence

without any qualifier in between them. As

shown in fig. 1, if the control system is in the

state STX it must unconditionally transit to

state STY when a clock pulse occurs.

Fig. 1: Agent Class 0 [2]

b. Agent Class 1: State agent class 1 is handles

transition from one state (STX say) to one of

two alternative states (STY and STZ) depending

on the value of the qualifier, for instance Q.

This is shown in Fig. 2. If the control system is

in STX and the qualifier Q=0, control is

transferred to the agent state for STY.

However, if qualifier Q=1, control is

transferred to the agent for state STZ.

Fig. 2: Agent Class 1 [2]

c. Agent Class 2: The State 2 agent has two

qualifiers in cascade and the agent in the

present state has four alternative link paths that

determine the next state agent to handover to.

Each of the link paths may be selected

depending on the values of the qualifiers, taken

to be Q1 or Q2. For example, if the present

state is named ST0, the state agent for ST0

would hand over to state ST1 if Q1=0. It would

still hand over to the state agent for ST1

whether qualifier Q2 is 0 or 1. Therefore

qualifier Q2 is said to be a don‟t-care. If

however, Q1=1 then control would be

transferred to state agent ST2 if Q2=0 and to

state agent ST3 if Q2=1.

Fig. 3: Agent Class 2 [2]

d. Agent Class 3: Agent class 3 is required for

the condition where the present state is

separated from the alternative states by up to 3

qualifiers in cascade (Q1, Q2, Q3) Fig. 4. The

transitions from the present state ST0 to each

of the alternative states is determined by the

three qualifiers Q1, Q2, Q3. Note that when

Q1 is a zero, transition must be to agent for

state ST1 no matter what Q2 and Q3 are.

Similarly, when qualifier Q1=1 and Q2=0,

transition must be to state ST2 irrespective of

the value of ST3. The reason the fully

expanded table is used is to facilitate the use of

a look up table by the state agents which

allows the indexing of the tables using

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 45

qualifiers [2]. These transitions for agent class

0-3 are shown in table 1 to table 2 respectively.

Fig. 4: Agent Class 3 [2]

Table 1: Class 0 agent transition [2]

Table 2: Class 1 agent transition [2]

 Table 3: Class 2 agent transition [2]

 Table 4: Class 3 agent transition [2]

When looking at an ASM chart, the state

agents are made to be an instantiation of one of the

agent classes depending on the number of qualifiers

n, between it and alternative transition link paths.

When n= 0, 2
n
 = 2

0
 = 1, only one next state exists.

When n=1, 2
n
 = 2

1
 = 2, two possible next states

exist. The logic value of the qualifier determines

the output. The next state value is concatenated

with the state output bits to constitute the HEX

output.

For example, if two qualifiers are

represented as q1 q2, then, when q1q2 = 00,

V0(say) is output, when q1 q2 = 01, V1 (say) is

output, when q1 q2= 10, V2(say) is output and q1

q2 =11 causes V3(say) to be output (Inyiama,

Obiora-Dimson and Okezie, 2015). A similar

selection and output process is followed when there

are 3 qualifiers q1 q2 q3 in between one state and

another, in the case of type 3 state agents. Thus q1

q2 q3 would have 2
3
 = 8 possible binary

combinations namely 000, 001, 010, 011, 100, 101,

110 and 111 and would lead to the output of V0 or

V1 or V2 or V3 up to V7 depending on the subscripts

which Vs corresponds to [2].

2.2.2 Process Agent

Agents are independent by nature as

discussed earlier, the number of agents necessary to

implement an ASM chart is equal to the number of

states in that ASM chart. To allow that number of

agents to have full autonomy may cause a loss of

control in the system especially if something goes

wrong with one or more of the agents, hence the

need for co-ordination[2] [6]. The concept of

process agents is used to solve this problem. The

process agent co-ordinates the activities of all the

state agents in the same ASM chart as depicted in

fig. 5.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 46

Fig. 5: Process Agent [2]

For each input data into the system, the process

agent performs the following:

i. It detects the inputs

ii. Extracts the present state code

iii. Activates state agent that corresponds to

the state code

iv. It supplies the values of the qualifier

v. The state agent that is activated produces

an output pattern which is a combination

of the next state code and the outputs.

vi. After executing the above operation, the

agent is deactivated until it is called up

again

The above process is repeated for any

given input and this happens in a coordinated

manner. Only the process agent has access to the

output port of the microcontroller, thus it is the

responsibility of the process agent to activate the

needed state agents one at a time. [2]

III. MULTI-AGENT SYSTEM
A multi-agent system (M.A.S.) is a

computerized system composed of multiple

interacting intelligent agents within an

environment. Multi-agent systems can be used to

solve problems that are difficult or impossible for

an individual agent or a monolithic system to solve.

Intelligence may include some methodic,

functional, procedural approach, algorithmic search

or reinforcement learning. Although there is

considerable overlap, a multi-agent system is not

always the same as an agent-based model (ABM).

The goal of an ABM is to search for explanatory

insight into the collective behavior of agents

(which don't necessarily need to be "intelligent")

obeying simple rules, typically in natural systems,

rather than in solving specific practical or

engineering problems. The terminology of ABM

tends to be used more often in the sciences and

MAS in engineering and technology [7]. Topics

where multi-agent systems research may deliver an

appropriate approach include online trading,

disaster response, and modeling social structures.

3.1 Concept of Multi-Agent systems

Multi-agent systems consist of agents and

their environment. Typically multi-agent systems

research refers to software agents. However, the

agents in a multi-agent system could equally well

be robots [8], humans or human teams. A multi-

agent system may contain combined human-agent

teams.

Agents can be divided into different types

ranging from simple to complex. Some categories

suggested to define these types include:

 Passive agents [9] or agent without goals (like

obstacle, apple or key in any simple

simulation)

 Active agents [9] with simple goals (like birds

in flocking, or wolf–sheep in prey-predator

model)

 Cognitive agents (which contain complex

calculations)

Agent environments can be divided into:

 Virtual Environment

 Discrete Environment

 Continuous Environment

https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Monolithic_system
https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Function_%28computer_science%29
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Agent-based_model
https://en.wikipedia.org/wiki/Software_agent
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 47

Agent environments can also be organized

according to various properties like: accessibility

(depending on if it is possible to gather complete

information about the environment), determinism

(if an action performed in the environment causes a

definite effect), dynamics (how many entities

influence the environment in the moment),

discreteness (whether the number of possible

actions in the environment is finite), episodicity

(whether agent actions in certain time periods

influence other periods), and dimensionality

(whether spatial characteristics are important

factors of the environment and the agent considers

space in its decision making) [10]. Agent actions in

the environment are typically mediated via an

appropriate middleware. This middleware offers a

first-class design abstraction for multi-agent

systems, providing means to govern resource

access and agent coordination [11].

IV. DESIGN METHODOLOGY
 The water fall model was used to guide

the development of the multi agent based system.

Since the software designed in this work is for

multi-agent based system, the methodology used is

the multi-agent software engineering methodology.

This methodology is made for agent design and

consists of both the analysis phase and design

phase [12]. The analysis phase captures user

requirements/roles and presents the sequence of

events with charts such as the Algorithm State

Machine (ASM) chart. Once this is accomplished,

the design phase transforms the defined roles into

agent types and implements the complete system

configuration.

4.1 System Design

Multi-agent systems can be realized using

any kind of programming language. In particular,

object-oriented languages are considered a suitable

means because the concept of agent is not too

distant from the concept of object [4]. In fact,

agents share many properties with objects such as

encapsulation, inheritance and message passing.

However, agents also differ from objects in several

key ways; they are autonomous (i.e. they decide for

themselves whether or not to perform an action on

request from another agent); they are capable of a

flexible behavior; and each agent of a system has

its own thread of control. Agent-oriented

programming languages are a new class of

programming languages that focus on taking into

account the main characteristics of multi-agent

systems [4]. Minimally, an agent-oriented

programming language must include some

structure corresponding to an agent, but many also

provide mechanisms for supporting additional

attributes of agency such as beliefs, goals, plans,

roles and norms.

Object orientation is thus very useful in

that it leads to a high number of software codes that

can be re-used in different unrelated projects

featuring agent-based design. One of the key

components of multi-agent systems is

communication. In fact, agents need to be able to

communicate with users, with system resources,

and with each other if they need to cooperate,

collaborate, and negotiate and so on. In particular,

agents interact with each other by using some

special communication languages, called agent

communication languages. In this work Java

programming language is used.

4.2 Software Architecture

The diagram in Fig. 6 shows the main

architectural elements of the platform. The

platform is composed of agent containers that can

be distributed over the network. Agents live in

containers which are the Java processes that

provide the run-time and all the services needed for

hosting and executing agents [13]. There is a

special container, called the main container (i.e the

process agent container), which represents the

bootstrap point of a platform: it is the first

container to be launched and all other containers

must join to a main container by registering with it.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 48

Fig. 6: Architectural elements of the multi agent based platform [4]

The programmer identifies containers by

simply using a logical name; by default the main

container is named „Main Container‟ while the

others are named „Container-1‟, „Container-2‟, etc.

Command-line options are available to override

default names. As a bootstrap point, the main

container has the following special responsibilities

[14]:

 Managing the container table (CT), which is

the registry of the object references and

transport addresses of all container nodes

composing the platform

 Managing the Global Agent Descriptor Table

(GADT), which is the registry of all agents

present in the platform, including their current

status and location;

 Hosting the Agent Management System

(AMS) and the Directory Facilitator (DF), the

two special agents that provide the agent

management and white page service, and the

default yellow page service of the platform,

respectively.

When the main-container is launched, two

special agents are automatically instantiated and

started by the software, whose roles are defined by

the Agent Management System:

1. The Agent Management System (AMS)

is the agent that supervises the entire platform. It is

the contact point for all agents that need to interact

in order to access the white pages of the platform

as well as to manage their life cycle. Every agent is

required to register with the AMS (automatically

carried out by agent start-up) in order to obtain a

valid Agent Identity.

2. The Directory Facilitator (DF) is the

agent that implements the yellow pages service,

used by any agent wishing to register its services or

search for other available services. The DF also

accepts subscriptions from agents that wish to be

notified whenever a service registration or

modification is made that match some specified

criteria. Multiple DFs can be started concurrently

in order to distribute the yellow pages service

across several domains. These DFs can be

federated, if required, by establishing cross-

registrations with one another which allow the

propagation of agent requests across the entire

federation.

The agent addresses are transport

addresses inherited by the platform, where each

platform address corresponds to an MTP (Message

Transport Protocol) end point where compliant

messages can be sent and received.

The IMTP (Internal Message Transport

Protocol) is exclusively used for exchanging

messages between agents living in different

containers of the same platform. It is considerably

different from inter-platform MTPs.

The overall design process involved in the

automatic code generator is as shown below:

 Adapt the State Transition Table (STT) to

Fully Expanded State Transition Table

 Carryout assignment of State and Process

agent

 Develop control logic for agents initialization

 Develop reusable codes for multi agent

control

 Output code for compilation to be fitted into

microcontroller

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 49

4.3 Developing Algorithm

The first step in program design is implies listing

the steps involved in developing the software from

beginning to the end. In this work, the algorithm is

as stated below:

 Beginning of program

 Definition of process agent and state agent

classes and methods

 Initialization of process agent and state agents

 Activation of process control agent

 Process control agent reads process control

inputs

 Process control agents activates the state

agents specified in the inputs

 Active state agent releases the next output

pattern to process agent

 End

V. RESULTS AND DISCUSSION
5.1 Implementing the system

With automatic code generation, a control system

can be automated to perform its function by simply

applying the codes that shall be developed here to

this system. By supplying the relevant input codes

that would initialize this automatic code generator,

the software code with the information to handle

the function is automatically generated and when

executed, will make the system function in its

capacity. This automatic code generator is aimed at

reducing software design effort from scratch when

the need to design a new control system arises.

Before the automatic code generator software is

used, the Engineer automating the control system is

required to have an ASM chart. This ASM chart is

converted to State Transition Table (STT). The

STT is converted to Fully Expanded State

Transition Table (FESTT). Then it is from this

FESTT that the state agents are gotten, and these

are the inputs to the automatic code generator. An

ASM chart of a system that lights up a hotel room

and turns the Air conditioner (AC) on when there is

an occupant and turns off the light and Air

conditioner when there is no occupant is depicted

in fig. 2

Fig. 7: Diagram Depicting the ASM Chart

The working standard of the ASM chart is

represented in fig. 7:

i. At state ST0, Air conditioner (AC) and

light are off, the control system checks to

see if there is any occupant (Q1) in the

room. If there is no occupant in the room,

it goes back to ST0. If there is an

occupant, it moves to state ST1.

ii. At state ST1, Air conditioner (AC) and

light are on, the control system checks to

see if the occupant in the room is still

there (Q2). If yes it goes back to state

ST1, if no it goes to state ST0 and the

entire cycle is repeated.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 50

Table 5: The State Transition Table (STT)

Link path

Present state

Name Code

Qualifiers

Q1 Q2

Next state

Name Code

State Output

AC Light

L1 ST0 0 0 - ST0 0 0 0

L2 ST0 0 1 - ST1 1 0 0

L3 ST1 1 - 1 ST1 1 1 1

L4 ST1 1 - 0 ST0 0 1 1

Table 6: Fully Expanded State Transition Table

Link Path

Present State

Name Code

Qualifiers

Q1 Q2

Next State

Name Code

State Output

AC Light

Hex

Output

State

agent

L1 ST0 0 0 0 ST0 0 0 0 0 State

agent

Zero
L1 ST0 0 0 1 ST0 0 0 0 0

L2 ST0 0 1 0 ST1 1 0 0 4

L2 ST0 0 1 1 ST1 1 0 0 4

L3 ST1 1 0 1 ST1 1 1 1 7 State

agent

One
L3 ST1 1 1 1 ST1 1 1 1 7

L4 ST1 1 0 0 ST0 0 1 1 3

L4 ST1 1 1 0 ST0 0 1 1 3

From table 6, two state agents are derived; state

agent zero and state agent one. These are the inputs

to the automatic code generator.

The automatic code generator software is

developed and executed. The screen snap shots of

different stages of the execution were shown and

described in figures 3, 4, 5, 6, 7, 8, 9, 10, 11 and

12. These snap shots showed how the automatic

code generator generated the source code that will

automate the control system specified in the ASM

chart in fig. 7.

Fig. 8: User Interface of the Automatic Code Generator Software

From the fig. 8, the select state Agent code

button enables the initialization of the state Agents

from state agent 0 to state agent 7. This software is

limited to Multi Agent Systems with only 8 state

agents. For each state agent, the next state code,

state output and conditional output (if any) is

inputted from the left, in fig. 6. An alternative to

this is to upload a text file containing the

concatenation of the state agent, the next state code,

state output and conditional output (if any)

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 51

separated by commas. The upload Agent class file

button is used for this purpose. The software

incorporates a virtual test button to allow the user

to view the generated fully expanded STT. The

values for a particular link path can also be inputted

and tested to see if the output generated, matches

with what is contained in the fully expanded STT.

The generate source code button enables the

generation of the source code which when

compiled would be burnt into a microcontroller for

the execution of the programme instructions.

Fig. 9: Screen showing when Select Agent Code Button is Clicked

When the Select State Agent Code button

is right clicked as depicted in fig. 9, the list of the

state agents are displayed. From table 2, two state

agents are derived; state agent zero and state agent

one. To fill in the state agents, the one to be filled

is highlighted and clicked. In fig. 10, the State

Agent Zero is highlighted and clicked. In fig. 11,

the values of state agent zero are inputted. The

information filled in is gotten from the FESTT in

table 2. These are 000, 000, 100 and 100. The

allocation for these inputs has eight digits

maximum, but our inputs have three digits. The

inputs are concatenation of the next state and the

state output for this particular ASM chart in fig. 12.

So in filling in the input, the first five digits are

filled with zeroes, and then followed by the three

digits of the inputs. In fig. 12, the state agent one is

highlighted and clicked. In fig. 13, the values are

inputted. It is filled in with these information, 111,

111, 011 and 011 as done for state agent zero

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 52

Fig. 10: Screen showing when State Agent Zero is highlighted.

Fig. 11: Screen showing when the values of State Agent Zero are inputted.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 53

Fig. 12: Screen showing when State Agent One is highlighted.

Fig. 13: Screen showing when the values of State Agent One are inputted.

Then after the filling in of the inputs, the done button is clicked and information showing success is displayed

on the screen. This is shown in fig. 14.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 54

Fig. 14: Screen showing when Done Button is clicked.

Fig. 15: Screen showing when Virtual Test Button is Clicked.

In fig. 16, FESTT would be generated when

Decode All button is clicked. Decode Button

generates the information for a particular link path,

when clicked while Upload File button uploads the

file where the information from the engineer‟s

FESTT is stored, when clicked.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 55

Fig. 16: Screen showing when Decode All Button is clicked.

Fig. 17: Screen Showing when Generate Source Code Button is Clicked.

Fig. 17 depicts the source code or the

program code automatically generated by the

automatic code generator. The programming

language used for the generated source code is C

programming language. The source code generated

by the automatic code generator will then be

compiled with C compiler known as MiKro C Pro

and this hex code will be burnt into a

microcontroller. The microcontroller chosen for the

test execution and simulation is a PIC

microcontroller. The memory architecture of the

source code is specially designed for PIC

microcontrollers, thus subsequent improvement

should enable the selection of other

microcontrollers. The simulation environment is

Proteus.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 56

Fig. 18: Proteus Representation of the System with ASM chart of Fig. 7

In the fig. 18, the microcontroller used is

the Pic16F877A, which is clocked at 32MHz. A

PIR (Passive Infra Red) sensor is used to sense

human presence in the room. The PIR sensor used

in the simulation has 4 pins namely: VCC, OUT,

GND and Test pin. The VCC pin is connected to

5V source, the OUT pin is connected to pin RD1 of

the PIC microcontroller. The GND pin is connected

to ground. The RD1 pin of the microcontroller is

used as the input to sense when there is human

presence, but because this is a simulation, the PIR

sensor module for Proteus has a “Test pin” which is

used to simulate human presence. When a

HIGH(Logic 1) is sent to this pin using the logic

probe connected to it, the RD1 pin goes high which

means there is human presence and the LED turns

ON and the motor (representing the fan) rotates.

When a LOW (Logic 0) is sent, the RD1 pin goes

low which means there is no human presence, the

LED turns off and the motor stops rotating.

VI. CONCLUSION
Automated Process control using multi-

agent has become popular in recent time.

Automatic code generator makes it less tasking and

time consuming to generate process control codes.

Thus a researcher with any automation design

problem that can be tailored to an ASM chart can

benefit from the automated code generator design

example showcased in this paper.

The method discussed here is generic and

is not limited to monitoring agent-based process

control systems. Other process control systems

designed using any other method can be monitored

using this method, except that the ASM chart and

the modified STT must be provided to aid the

design of the agent monitoring system. Automatic

Code Generator (ACG) allows software engineers

to create more concise, maintainable and reusable

solutions ultimately improving their productivity.

REFERENCES

[1]. Pohl, C., Paiz, C., and Porrmann, M. (2009).

vMAGIC—Automatic Code Generation for

VHDL.International Journal of

Reconfigurable

Computing.http://dx.doi.org/10.1155/2009/2

05149. Volume 2009 (2009), Article ID

205149, 10 pages. Heinz Nixdorf Institute,

University of Paderborn, Fürstenallee 11, D

– 33102 Paderborn, Germany.

[2]. Inyiama, H.C., Obiora-Dimson, C.I. and

Okezie, C.C. (2015). “Designing an

automated code generator for multi-agent

based process control and

monitoring”,RexCOMMPAN©2015

www.rex.commpan.com Page 1.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 2, pp: 42-57 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-45122323 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 57

International Journal of Advanced

Multidisciplinary Research Reports. Volume

I Number 1. Maiden Edition.

[3]. Hill, J. (2004) Brief Introduction to ASM

Charts.

[4]. Fabio Bellifemine, G. C. (2007). Developing

Multi-Agent Systems with JADE. John Wiley

& Sons Ltd.

[5]. Inyiama, H. C., Okezie C, C., and Okafor, I.

C. (2012). “Agent Based Process Control

System Design”. Proceedings of the peer

reviewed 2012 National conference on

infrastructural development and

maintenance in the Nigerian environment.

[6]. Terán, J. A. (2014). “Collective Learning in

Multi-Agent Systems Based on Cultural

Algorithms”. Clei Electronic Journal .

[7]. Niazi, M. and Hussain, A. (2011). Agent-

based Computing from Multi-agent Systems

to Agent-Based Models: A Visual Survey

(PDF). Scientometrics. Springer. 89 (2):

479–499. doi:10.1007/s11192-011-0468-9.

[8]. Ghasemlou, S., Ali, M ., Taher, A. S., and

Mohammadreza, T. (2014). Homecoming: A

multi-robot exploration method for conjunct

environments with a systematic return

procedure. In European Conference on

Multi-Agent Systems, pp. 111-127. Springer

International Publishing,

[9]. Kubera, Y., Mathieu, P. and Picault, S.

(2010). Everything can be Agent! (PDF),

Proceedings of the ninth International Joint

Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS'2010),

Toronto, Canada: 1547–1548

[10]. Salamon, T. (2011). Design of Agent-Based

Models. Repin: Bruckner Publishing. p. 22.

ISBN 978-80-904661-1-1.

[11]. Weyns, D., Omicini, A. and Odell, J.

(2007). Environment as a first-class

abstraction in multiagent systems (PDF).

Autonomous Agents and Multi-Agent

Systems.

[12]. Obiora-Dimson I. and Inyiama H. C. (2017).

Re-Engineering Complex Process Control

Systems Using Sub-Process Agents. Journal

of Engineering Research and Application ,

pp 53-61.

[13]. Hayzelden, A. A. (2001). Agent Technology

for Communication Infrastructures. John

Wiley & Sons.

[14]. Uju Mokwe V., Stephen U. Ufoaroh,

Obiora-Dimson Ifeyinwa and Kebiru Abu

(2020). “Agent-Based Automatic Code

Generator for Control Systems Using the

Algorithmic State Machine Chart Approach”

International Journal of Latest Technology

in Engineering, Management & Applied

Science (IJLTEMAS) Volume IX, Issue VI.

PP. 1-12.

http://www.researchgate.net/profile/Amir_Hussain5/publication/220365334_Agent-based_computing_from_multi-agent_systems_to_agent-based_models_a_visual_survey/links/549f00b80cf281d393a2532b.pdf
http://www.researchgate.net/profile/Amir_Hussain5/publication/220365334_Agent-based_computing_from_multi-agent_systems_to_agent-based_models_a_visual_survey/links/549f00b80cf281d393a2532b.pdf
http://www.researchgate.net/profile/Amir_Hussain5/publication/220365334_Agent-based_computing_from_multi-agent_systems_to_agent-based_models_a_visual_survey/links/549f00b80cf281d393a2532b.pdf
https://en.wikipedia.org/wiki/Springer_Science%2BBusiness_Media
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2Fs11192-011-0468-9
http://agents.fel.cvut.cz/eumas2014/papers/111110164.pdf
http://agents.fel.cvut.cz/eumas2014/papers/111110164.pdf
http://agents.fel.cvut.cz/eumas2014/papers/111110164.pdf
http://agents.fel.cvut.cz/eumas2014/papers/111110164.pdf
http://agents.fel.cvut.cz/eumas2014/papers/111110164.pdf
http://agents.fel.cvut.cz/eumas2014/papers/111110164.pdf
http://agents.fel.cvut.cz/eumas2014/papers/111110164.pdf
http://www.lifl.fr/SMAC/publications/pdf/aamas2010-everything.pdf
http://www.designofagentbasedmodels.info/
http://www.designofagentbasedmodels.info/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-80-904661-1-1
http://www.cs.kuleuven.be/~danny/papers/2007JAAMAS.pdf
http://www.cs.kuleuven.be/~danny/papers/2007JAAMAS.pdf

